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Abstract Materials, where charge carriers have a linear
energy dispersion, usually exhibit a strong nonlinear
optical response in the absence of disorder scattering.
This nonlinear response is particularly interesting in the
terahertz frequency region. We present a theoretical and
numerical investigation of charge transport and nonlinear
effects, such as the high harmonic generation in topolo-
gical materials including Weyl semimetals (WSMs) and
α-T3 systems. The nonlinear optical conductivity is
calculated both semi-classically using the velocity operator
and quantum mechanically using the density matrix. We
show that the nonlinear response is strongly dependent on
temperature and topological parameters, such as the Weyl
point (WP) separation b and Berry phase fB. A finite
spectral gap opening can further modify the nonlinear
effects. Under certain parameters, universal behaviors of
both the linear and nonlinear response can be observed.
Coupled with experimentally accessible critical field
values of 104 – 105 V=m, our results provide useful
information on developing nonlinear optoelectronic
devices based on topological materials.

Keywords terahertz, nonlinear effects, topological mate-
rials, Weyl semimetals (WSMs), α-T3 systems

1 Introduction

In recent years, materials with topological order [1–7] have
been intensively studied theoretically and experimentally.
In particular, Dirac [8,9] and Weyl materials [10,11] have
attracted considerable interest owing to their exotic
electronic properties and quantum transport related to
their topological properties. Owing to the massless
Fermion energy dispersion, these materials usually have
high electronic mobility (≈ 3300 cm2/(V$s)) and a
chemical potential that is tunable with gate voltage. It
has been demonstrated that bulk Dirac materials, such as

Cd3As2, can be applied in optoelectronics, e.g., in optical
switching.
Weyl semimetals (WSMs) are a class of topological

materials without time-reversal symmetry. This symmetry
is broken by the separation of two three-dimensional (3D)
Dirac (Weyl) cones in momentum space. The electrons
near the Weyl points (WPs) behave like massless charge
carriers, which are known as Weyl fermions. Although it is
difficult to experimentally detect and manipulate Weyl
fermions [12–15], the general thermal transport [16,17]
and charge transport [13,18–23] properties of WSMs have
been investigated in depth both theoretically and experi-
mentally [24–26]. The interaction of two Weyl cones of
opposite chirality results in many interesting phenomena,
such as the chiral magnetic effect (owing to interplay
between bulk Weyl cones and surface Fermi arcs) [27],
Andreev–Bragg reflection, formation of Majorana modes
via the connectivity of Fermi arcs, and the well-known
chiral anomaly [28,29] (which results in negative magneto-
optical resistance [30,31] and ultra-high carrier mobility
[32]).
The α-T3 model is best described as an interpolation

model between graphene and dice (or T3) lattice. The
interpolation procedure is described by moveable atoms
coupled to one of the two topologically inequivalent
atomic sites of each hexagonal unit cell. The parameter α 2
[0, 1] describes the distance of each moveable atom from
the atomic site to which it is coupled so that if each
moveable atom is in the center of the unit cell (α = 1), the
lattice will resemble a dice lattice, and if the moveable
atom is not present (α = 0), the lattice is a standard
graphene honeycomb. This two-dimensional (2D) material
has recently been fabricated in the (111) direction of
SrTiO3/SrIrO3/SrTiO3 [33] or by confining cold atoms to
an optical lattice [34]. For the intermediate values of α,
there is a significant influence of both the dispersionless
flat band and valence band, which results in nontrivial
topology [35–37], unusual interaction effects [38–41], and
electronic properties such as super-Klein tunneling [42–
44], minimal conductivity [45], orbital magnetic response
[46], and Weiss oscillations [47].
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It has been shown for both 2D and 3D materials, in both
the classical description and full quantum mechanical
approach, that the velocity of charge carriers following a
linear energy dispersion is not directly proportional to the
momentum of the carrier. This leads to the coupling of the
particle with the electromagnetic fields to infinite orders in
the absence of scattering by disorders [48–52]. Therefore,
even in the single electron model, the Dirac system is a
strong nonlinear material. For 2D Dirac systems, such as
graphene, strong nonlinear effects (e.g., photomixing [48],
high harmonic generation (HHG), nonlinear surface
plasmon polariton coupling to light [53], and optical
bistability [54]) have been demonstrated. In 3D Dirac
materials and WSMs, strong photomixing in the terahertz
regime [55] and ultrafast charge dynamics have been
studied [56,57].
In this work, we review some specific theoretical and

computation focus on the nonlinear optical response in 3D
topological materials in the terahertz regime. We study
WSMs and the α-T3 system both with and without a
spectral gap. This band gap is usually induced by impurity
or structural asymmetry. On the basis of the quantum
mechanical states and energy dispersion, the transport
equation will be used to calculate current response using
semi-classical and quantum mechanical approaches. The
dependence of the nonlinear response on important
parameters, such as Weyl cone separation and band gap,
will be identified. In the semi-classical formalism, the
Taylor expansion of the velocity operator allows one to
calculate nonlinear conductivities. While in the quantum
formalism, the order of both the matrix units and reduced
density matrix must be taken into account when equating
each order of the electric field. Both formalisms allow one
to readily identify how the nonlinear effects dependent on
the aforementioned intrinsic parameters.
The nonlinear optical properties are characterized by the

required electric field strength so that the first order and
lowest order nonlinear conductivities are equal in magni-
tude; this is known as the critical field. If the critical field is
experimentally reachable for terahertz frequencies, there
are a number of potential uses for this material, such as
photo-mixing and tunable terahertz signal generation and
receiving.

2 Theoretical methods

In this section, we characterize the two systems investi-
gated by looking at their electronic structure and introduce
the models used to determine their nonlinear properties.

2.1 Electronic structures

2.1.1 Weyl semimetals

Using the minimal coupling model, the Hamiltonian of a

two-node semimetal is given by [19,55]

HWSM ¼
vFσ$ðpþ bÞ ΔI2

ΔI2 vFσ$ðb – pÞ

 !
, (1)

where I2 is the 2�2 identity matrix and vF ≈ 106 m/s is the
Fermi velocity [58], σ is the Pauli spin matrix, p is the
linear momentum and b is Weyl points separation. This
Hamiltonian is CP -invariant; however, time reversal
invariance is broken by b≠0 [20]. Equation (1) is
explicitly diagonalizable.

EWSM ¼ svF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ
vF

� �2

þ jbj2 þ jpj2 þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ pÞ2 þ Δjbj

vF

� �2
svuut

, (2)

where s, r = �1 denote the four bands. The dispersion in
Eq. (2) is shown graphically in Fig. 1. For vF|b|>D, the two
nodes are separated into two WPs separated in momentum

space by the vector 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 –

Δ
vFjbj
� �2

s
b̂. We denote this as

the WSM phase. If vF|b|= D, there is a single doubly
degenerate WP, and the structure is in a 3D massive Dirac
semimetal (MDSM) phase. The commonly studied mass-
less DSM phase is a special case of the MDSM phase,
where D = 0. The parameter D may be intrinsic or extrinsic

and gaps out the spectrum by vF  ����ΔvF – jbj 
���� if Δ> vFjbj, in

which case the structure is in a gapped semimetal phase
(GSM).

2.1.2 α-T3 model

The minimal coupling Hamiltonian for the α-T3 lattice is
given by [59,60]

Hα-T3
¼

0 τ1fk cosφ 0

τ1f
�
k cosφ Δ τ2fksinφ

0 τ2f
�
k sinφ 0

0
B@

1
CA, (3)

where τ1 and τ2 are the hopping amplitudes between
adjacent triangular lattice, k =(kx, ky), and ∗ denotes
complex conjugation.

fk ¼ – 1þ
X
�

expð – ik$a�Þ
" #

, (4)

is the structure factor formed by linear combinations of
Bloch states from the three neighboring sublattices with
µ = 1 and 2 for two Bravais lattice vectors, a1 ¼
að ffiffiffi

3
p

=2,3=2Þ and a2 ¼ að – ffiffiffi
3

p
=2,3=2Þ, where a is the

inter-site distance, D arises from the real chemical potential
of the movable atom gapping the spectrum, and finally the
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parameter φ is related to α by α = tanφ.
The three wave functions and associated eigen-energies

are found as

�0 ¼
1

τ#

– τ2sinφe
i2�k

0

τ1cosφ

0
B@

1
CA, (5)

for E0 = 0 and

�k,l ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
l þ jfk j2τ#2

q
τ1fkcosφ

El

τ2f
�
k sinφ

0
B@

1
CA, (6)

for El ¼ ðΔþ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4jfk j2τ#2

q
Þ=2, respectively, where

l = �1 correspond to the conduction (+) and valence ( – )

bands, and τ#2 ¼ τ21cos
2φþ τ22sin

2φ. The states �k,s ðs
¼ 0,� 1Þ satisfy the orthogonality condition
h�k,sj�k0,s0 i ¼ δss#δðk – k0Þ. The three-band dispersion
relation is shown in Fig. 2.
The topology of the crystalline structure is manifested in

the dispersion and wave functions by connecting

fB

π
¼ cos 2φð Þ ¼ cos 2arctanαð Þ

to the Berry phase fB [59,61]. Then, it is readily observed
that changing α continuously from 0 to 1 changes the Berry
phase from π to 0. Hence, at the extremal value α = 0, there
will be no conductivity contribution from the flat band with
Chern number 0, and conversely for α = 1, there will be no
conductivity contribution from the l = –1 valence band
with nonzero Chern number.

2.2 Nonlinear conductivity

We present two methods for calculating the nonlinear
conductivities of the material, i.e., a semi-classical
formalism based on the Taylor expansion of the velocity
operator and a quantum formalism, which requires solving
the equation of motion of the reduced density matrix. In
both models, we truncate the nonlinear current after the
third-order term

Ji ¼ �
ð1Þ
i E i þ �

ð2Þ
ii E2

i þ �
ð3Þ
iii E

3
i ,

for an applied field E i directed along the ith direction. This
is valid in the high-frequency/low applied field regime
(ω> 0.00355 THz for E = 102 – 105 V/m [60]), which

Fig. 2 Dispersion relation for the α-T3 lattice. The lines on the
right show two interband transitions, E –! E0! E+ and E0! E+

as well as one intraband transition E+! E+

Fig. 1 Dispersion relation of Eq. (2) with: (a) vF|b|>D: WSM phase, (b) vF|b|= D: MDSM phase, and (c) vF|b|<D: GSM phase. The
arrows in Fig. 1(a) show two types of intraband current contributions for an electric field parallel to b
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aligns with the region of validity for the minimal coupling
model: p� eA.

2.2.1 Semi-classical model

In the minimal coupling scheme, p! p+ eA =P, where
e> 0 is the electron charge and E = – (1/c)∂tA determines
the vector potential. To determine the nonlinear intraband
conductivities in a semi-classical regime, we are free to use
viðΠÞ=rpEiðΠÞ for carriers in the ith band:

vWSM Πð Þ ¼ vF

Π –
bððΠÞ$bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððΠÞ%bÞ2 þ Δjbj
vF

� �2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΠj2 þ jbj2 þ Δ

vF

� �2

– 2Γ

s , (7)

where Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΠ%bÞ2 þ ðΔjbj=vFÞ2

q
. Note Eq. (7) does not

include any anomalous terms related to the Berry
curvature; _k � Ω. This occurs because the P -symmetry
of Eq. (1) requires Ω(p) = Ω( – p) with the anomalous
velocity contributions around each WP cancelled out,
where the Chern numbers are �1.
Equation (7) includes all orders of the applied field. To

isolate different order conductivities, we perform the
Taylor expansion of vWSM to isolate orders of A and
hence the applied field, v(n) / En. The nth order current
response is calculated by the standard solid-state formula
[55].

J ðnÞ ¼ e

ð2π`Þ3!ℝ3
d3pvðnÞNF: (8)

The limits of integration for r = –1 are chosen to avoid
singular WPs, where the assumption that our model is
based on p� e|A| fails. Ns,r = ð1þ exp½ðEs,r –EFðb,ΔÞÞ
T – 1�Þ – 1 is the Fermi–Dirac distribution function, where
the Fermi level EF is determined self-consistently by the
condition of constant concentration [55]. Finally, because
we are interested in the intraband conductivity, we only
consider the contribution from the s = 1, r = –1 band
because for typical parameters [23,58,62] µ0<<Es= 1,
r = 1.

2.2.2 Quantum model

For a time-dependent radiation field, EðtÞ ¼ Exêx ¼
E0e

– iωt êx, the vector potential in the velocity gauge is
A ¼ – iðc=ωÞe – iωtExêx ¼ Aωe

– iωt. Using the minimal
coupling scheme, we Taylor expand the structure factor
in Eq. (4) in powers of A (and hence applied field) to obtain

fΠ ¼ fk –
X
n¼1

1

n!
– i

e

`c

� �n

AðnÞ kð Þ, (9)

where AðnÞðkÞ=
X

�
e – iðk%a�þnωtÞðAω%a�Þn. The time-

dependent Hamiltonian can now be written in the form

Hðk, tÞ ¼ Hα-T3
ðkÞ þ Hemðk, tÞ, (10)

where Ha-T3
(k) is independent of A(t) and retains the

eigenstates �0 and �k,l, and Hem(k, t) contains the
interaction of electrons with the external field and is
given by

Hem k, tð Þ ¼ –
X
n¼1

1

n!
– i

e

`c

� �n
0 τ1A

ðnÞcosφ 0

τ1ð – 1ÞnAðnÞ*cosφ 0 τ2A
ðnÞsinφ

0 τ2ð – 1ÞnAðnÞ*sinφ 0

0
BB@

1
CCA: (11)

We use the eigenstates of Hα-T3
ðkÞ to write H(k, t) in a

second quantized form. This is done via the standard
procedure of writing the time-dependent wave function as

ψðtÞ ¼
X

k
ak,0ðtÞ�0 þ

X
k,l
ak,lðtÞ�k,l, where ayk,s and

ak,s are the creation and annihilation operators of Bloch
states, respectively. Then, the Hamiltonian in Eq. (10)
becomes

H ¼
X
k,l

½Ela
y
k,lak,l þ ðMl,0ðkÞayk,lak,0 þ h:c:Þ

þMl,lðkÞayk,lak,l þMl, – lðkÞayk,lak, – l�, (12)

where Mi,j ¼
X

n
An
xM

ðnÞ
i,j with i, j = 0, l and M ðnÞ

i,j ðkÞ ¼
½M ðnÞ

i,j ðkÞ�* are the matrix units. For simplicity, we set

τ1 = τ2 = τ in our calculations so that τ′! τ. Mi,j is shown
explicitly in Ref. [60].
The reduced density matrix is given as �s,s0 ðk, tÞ=

hayk,sðtÞak,s0 ðtÞi. Using the equation of motion for a

quantum operator, i`½d�s,s0 ðkÞ=dt� =h½ayk,sak,s0HðtÞ�i, we
obtain

i`
∂
∂t

þ Es –Es0 þMs,s –Ms0,s0

� �
�s,s0

¼ –M0,s�0,s0 þMs0,0�s,0 –M – s,s� – s,s0 þMs0, – s0�s, – s0

–
X
l

ðδs,0Ml,0�l,s0 – δs0,0M0,l�s,lÞ: (13)
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This allows one to isolate different order optical

response terms by expanding �s,s0 ¼
X

m
Am
x �

ðmÞ
s,sí in

powers of A. The Fourier transformed components

�
ðmÞ
s,síðk,ωÞ can be obtained from this recursion relation

given that the zeroth-order reduced density matrix terms

are defined �
ð0Þ
s,síðkÞ ¼ δs,s0NsðkÞ, where Ns is the Fermi–

Dirac distribution of band s at temperature T and chemical
potential µ. Explicit expressions for the first-, second-, and
third-order components can be found in Ref. [60].
Finally, the current response in the x-direction is

calculated using the standard electrodynamics formula

JxðωÞ ¼ chrAHðk,tÞi

¼ c
X
k,l,n,m

nAnþm – 1
ω ½M ðnÞ

l,0ðkÞ�ðmÞl,0 þM ðnÞ
0,lðkÞ�ðmÞ0,l

þM ðnÞ
l,lðkÞ�ðmÞl,l þM ðnÞ

l, – lðkÞ�ðmÞl, – l�, (14)

where the conditions n≥12ℤ and m≥02ℤ are used to
determine the different order optical responses. For
example, (n, m)={(1, 1), (2, 0)} for the first order, and
(n, m) = {(2, 1), (3, 0), (1, 2)} for the second order.

3 Results and discussion

Since the P -symmetry in both Eqs. (1) and (3) is
preserved, σ(2) = 0 for both materials studied. Hence, σ(3)

is the lowest nonlinear term, and we approximate

J ¼ �
ð1Þ
i E þ �ð3ÞE3

by dropping the tensor notation since J jjE herein. The
strength of the nonlinear term can be quantified by
calculating the applied field strength at which the
magnitude of the first-order current J ð1Þ ¼ �ð1ÞE is equal
to the magnitude of the third-order current J ð3Þ ¼ �ð3ÞE3.
This is known as the critical field and is given by

Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j�ð1Þj
j�ð3Þj

s
:

3.1 Nonlinear conductivity in Weyl semimetals

In this section, we elucidate how the nonlinear response of
the Hamiltonian in Eq. (1) depends on its topological phase
(WSM, MDSM/DSM, or GSM) and further probe the
intriguing anisotropic response caused by b≠0. For the
discussion on how the nonlinear characteristics vary with
intrinsic and extrinsic parameters, see Ref. [55]. We begin
by surveying how first- and third-order conductivities vary
with (possibly) independent variables.
Figure 3 shows a discontinuous jump in σ(3) as D≠ 0.

Despite still being in the WSM phase, D≠ 0 destroys the
linearity of the dispersion along the direction of b, which
produces such discontinuity. Both third- and first-order
conductivities decrease when approaching the MDSM
phase, where a point of inflection occurs, and continue to
decrease into the GSM phase. The decrease of both
conductivities in the GSM phase is straightforwardly
explained by the existence of a spectral gap, which more
rapidly kills off third-order processes. Although in the
region 0 < Δ£vFjbj inter-cone transitions occur more
readily, both conductivities are dominated by intra-cone
processes, which die off as D!1 owing to the
renormalization of the Fermi velocity.
Contrary to the band gap dependence, Fig. 4 shows that

the inter-cone current is essential in the temperature
dependence of the third-order current. Although both
MDSM and GSM phases see an exponential increase in
both the first- and third-order conductivities with tempera-
ture, there is an initial decrease for the WSM phase. This
decrease corresponds to inter-cone carriers coupling to a
single photon more readily at lower temperatures. How-
ever, with an increase in temperature, the inter-cone current

Fig. 3 Band gap dependence of the first- and third-order
conductivities of WSM with � = 80 meV, T = 300 K, and ω=
1 THz for the field directed parallel to b

Fig. 4 Temperature dependence of the first- and third-order
conductivities of WSM with µ = 80 meV, D = 53 meV, and ω = 1
THz for the field directed parallel to b = bxx̂ = 0.8�108`x̂
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becomes a viable method of transport under three-photon
absorption, and there is a “turn-on” temperature (≈ 275 K
in Fig. 4) at which the third-order conductivity starts to
increase.
The conductivity for a field perpendicular to bð�?Þ can

be simply obtained by changing b↕ ↓byŷ: This nonlinear
anisotropy as a function of Δ is investigated in Fig. 5. Each
first-order curve in Fig. 5(a) reaches a minimum just prior
to the MDSM/WSM phase boundary where the perpendi-
cular conductivity reaches a maximum when the local
maxima EWSMðp ¼ 0Þ crosses the Fermi level. This
minimum region is accentuated by the inflection of parallel
conductivity at the WSM/MDSM boundary. Thereafter, in
the GSM phase, the perpendicular conductivity approaches
zero faster because there are no inter-cone transitions; thus,
anisotropy increases. The three most prominent features in
the third-order anisotropy diagram are the initial discontin-
uous spike, inflection at the MDSM phase boundary, and
the minimum located in the GSM region. First, the initial
spike is solely due to the parallel conductivity, as was
previously shown in Fig. 3. The perpendicular component
does not have such discontinuity because the carriers
follow a conic dispersion for Δ= 0. The point of inflection
occurs when EWSM(p = 0) = EF, and the ensuing minimum
is at the WSM/MDSM boundary when the perpendicular
conductivity is at the maximum. Because the ratio
Ec
jj=E

c
? > 1, one can conclude that WSM is a better

nonlinear material when the field is imposed perpendicular
to b.
Though the temperature dependence of the first-order

conductivity is similar in both parallel and perpendicular
directions, the anisotropy is different, as shown in Fig. 6
(a). The increase over this temperature range of the two
lower b-valued curves is attributed to the increased
gradient of the parallel component owing to the ease of

inter-cone transitions. The negativity of the b ¼ 0:5�
108` curve in Fig. 6(b) is because �ð3Þ

? < 0. Accounting for
this conductivity parity in the GSM phase, all third-order
curves behave similarly with temperature; i.e., they
increase at the “turn-on” temperature for inter-cone
transitions. This increase is desirable in practice
because it leads to the lower critical field at higher
temperatures.

3.2 Nonlinear conductivity in α-T3 model

From the quantum equation of motion (Eq. (13)), the first-
order optical conductivity tensor is obtained as in Ref. [60].
The first-order characteristics in frequency domain are
shown in Fig. 7. The T =Δ= 0 characteristics in Fig. 7 show
that, as expected, the flat band plays no role in the α = 0
conductivity, whereas the E –valence band plays no role in
the α = 1 conductivity. However, for the intermediate
values of α, both E0! E+ (at ω = µ) and E – ! E+ (at ω =
2µ), interband processes are present. For each α-value, the
parameters T, µ, and Δ play the same role. An increase in T
breaks the Hall quantization and smooths out the step
function, whereas an increase in µ merely shifts the Hall
effect frequency (or frequencies). The band gap parameter
breaks quantization in a more topologically significant
manner. First, the peaks become larger and are shifted in
frequency by sgn(µ –Δ)Δ. Further, instead of exhibiting a
Hall plateau, the conductivity decreases asymptotically
toward the Δ= 0 value at higher frequencies where`ω> ε.
For the third-order conductivity, we set D = 0 because we

are interested in harmonics not quantization. The σ(3)

includes contributions from 3 intraband processes and 22
interband processes [60]. Owing to the five unique
harmonic processes embedded in the interband response,
Fig. 8 shows a ridged response in the THz region.

Fig. 5 Band gap dependence of the anisotropy of (a) first-order conductivities, (b) third-order conductivities, and (c) critical fields in

WSM with µ = 80 meV, T = 300 K, and ω= 1 THz for a field directed parallel to b = bxx̂ = 0.8�108`x̂
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The dice lattice (fB ¼ 0) response is dominated by the
three-photon flat-to-conduction band harmonic process

located at `ω =
1

3
�, whereas the graphene lattice (fB ¼ π)

is dominated by the three-photon valence-to-conduction

band harmonic process located at `ω=
2

3
�. However,

because the dice lattice peak is an order of magnitude
larger, one can surmise that the dice lattice is a superior
nonlinear conductor in the THz range. The most striking

feature of Fig. 8 is that an intermediate Berry phase fB ¼ π
2

allows the coexistence of third-order flat-to-conduction
and valence-to-conduction band processes, which high-
light the underlying geometric nature of HHG. By tuning
0<fB < π, the dominant peak fluctuates by an order of

magnitude and changes from `ω=
1

3
� near 0 to `ω =

2

3
�

near π. This characteristic allows to construct tunable THz
receivers.

Fig. 6 Temperature dependence of the anisotropy of (a) first-order conductivities, (b) third-order conductivities, and (c) critical fields in
WSM with µ = 80 meV, D = 53 meV, and ω = 1 THz

Fig. 7 First-order conductivity of the α-T3 lattice with (a) α = 0, (b) α = 0.5, and (c) α = 1. In each graph, a = 0.0142 nm, τ = 3 eV, and µ =
1 meVare the original values. The µ!1 values are 100 meV (Fig. 7(a)) and 20 meV (Figs. 7(b) and 7(c)); the T > 0 value is 4 K in each
graph, and the D> 0 values are 0.5 meV ((Fig. 7(a)), 1 meV (Fig. 7(b)), and 2 meV (Fig. 7(c))
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Another promising application of the nonlinear response
is to use the dominant peak to determine the Berry phase
and characterize the crystalline structure. This phenom-
enon is best exhibited in the critical field characteristics
shown in Figs. 9 and 10.
Figure 9 shows how the ideal operating THz bandwidths

for nonlinear effects (lowest critical field region) change
with the Berry phase. Although an intermediate Berry
phase provides a more feature-rich nonlinear response, the
ideal operating bandwidth is restricted by competing
harmonic processes. Furthermore, although fB ¼ π has a
larger critical field, its ideal operating bandwidth of
1–3 THz is larger than that of fB ¼ 0, where ω2[0.5,
1.5) THz provides the largest nonlinear effect.
Figure 10 shows that each frequency has a local

maximum critical field that is unique to some Berry
phases. In general, the maxima decrease with frequency for
ω2(0.5, 3] THz. These maxima open characterization
possibilities. If one were able to measure the critical field
for this range of frequencies, the injective relationship

between maxima in this domain and the Berry phase can be
used to directly calculate the Berry phase of the material.

4 Conclusions

We analysed the nonlinear intraband conductivity of a two-
node semimetal in WSM, MDSM, and GSM phases using
a semi-classical model. It is shown that the topological
phase, which is determined by the relative magnitudes of
vFb and D, is responsible for most characteristics in a
feature-rich and high magnitude nonlinear response. The
third-order conductivity is greatly enhanced by a small but
nonzero D if the applied field is parallel to b, whereas the
temperature dependence is enhanced for EWSMðp ¼
0Þ³EF when inter-cone transitions are guaranteed for
any direction field. The nonlinear response is also shown to
be highly anisotropic with conductivity parallel to b
dominating at lower temperatures and affecting values of D
for the WSM phase.
Using a quantum formalism, which is also valid for

higher frequencies of ω> 0.00355 THz, we compute the
nonlinear optical response of the α-T3 lattice. The first-
order conductivity shows Hall quantization at frequencies
that are directly determined by the topological phase. This
quantization is broken by both a nonzero temperature and a
nonzero band gap. HHG in the nonlinear response is also
determined by the topological phase. The flat band
response is also negated in the nonlinear response for fB ¼
π (graphene) and conversely for fB ¼ 0 (dice lattice) the
E – valence band response is negated. However, both
contribute to the nonlinear response for intermediate
values of the Berry phase. Although this dual contribution
inhibits the bandwidth for observing nonlinear effects, an
increase in the number of observable harmonics opens up
the possibilities of tunable nonlinear materials or the
characterization of topological materials based solely on
their nonlinear response.

Fig. 8 Third-order conductivity in the α-T3 lattice for different
Berry phases with a = 0.0142 nm, τ1 = τ2 = 3 eV, and µ = 1 meV

Fig. 9 Frequency dependence of the critical field in the α-T3

lattice for different Berry phases with a = 0.0142 nm, τ1 = τ2 =
3 eV, and µ = 1 meV

Fig. 10 Berry phase dependence of the critical field in the α-T3

lattice for different frequencies with a = 0.0142 nm, τ1 = τ2 = 3 eV,
and µ = 1 meV
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Owing to the large and tunable nonlinear response of all
considered materials, we surmise that these topological
materials would make ideal candidates for optoelectronics
device applications such as optical mixers and THz
receivers. The elucidation of how the topological phases
directly relate to the discussed nonlinear properties could
in practice lead to material characterization procedures that
are based solely on optical responses. Similar calculations
for other topological materials, such as nodal ring/line
semimetals, may be informative and would allow to
observe how symmetry breaking perturbations, such as
spin orbit coupling, affect our results.
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